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J. Phys. A: Math. Gen. 14 (1981) 1123-1129. Printed in Great Britain 

The spreading of wavepackets in quantum mechanics 

M Andrews 
Department of Theoretical Physics, Faculty of Science, Australian National University, 
ACT, 2600, Australia 

Received 23 September 1980 

Abstract. For a wavepacket representing a particle subject to a conservative force, 
consideration is given to the evolution in time of the mean position and momentum and to 
the evolution of the spread of these quantities as measured by the mean square deviation 
from the mean. A closed system of equations involving these spreads is obtained by 
expanding the potential in powers about the mean position and by neglecting terms of third 
order or higher in the deviations from the mean, an approximation appropriate when the 
force does not vary too much over the width of the packet. These equations are solved in 
terms of the trajectories of a classical time-dependent oscillator. These trajectories can be 
found by differentiation of the trajectories for the force under consideration. 

In more than one dimension, or for more than one particle, the appropriate generalisa- 
tion of the spread is the set of second-order correlations, e.g. ((x, -(x,))(x, - ( x , ) ) ) .  Again 
the equations for their evolution when higher correlations are neglected are solved in terms 
of classical trajectories. The equations for the evolution of these quantum correlations are 
identical to those for corresponding averages over clusters of classical particles, but 
quantum effects do appear in matching to the initial conditions. Some generalisations are 
briefly considered. 

1. Introduction 

Quantum wavepackets follow classical trajectories provided the force acting does not 
change significantly across the width of the packet. This follows from Ehrenfest’s 
theorem (e.g. Messiah 1961, ch VI, 0 2), which states that for a particle of mass m under 
a force F ( x )  derived from a potential V ( x )  

If ( F ( x ) ) = F ( ( x ) ) ,  then (x) will follow the classical trajectory. Thus the smaller the 
spread in position of the packet, the more closely will it follow the classical path. Unless 
the spread in momentum is also small, however, the packet will quickly spread in spatial 
extent. 

In order to calculate how well a wavepacket will follow the classical trajectory, it is 
necessary to calculate the way the spread of the packet changes as the packet moves. In 
one dimension, the spread is conveniently measured by the root-mean-square deviation 
from the mean position, Ax = ((x - ( x ) ) ~ ) ~ ’ ~ .  Indeed it is precisely this which is required 
to calculate a first correction to the trajectory. 

Messiah (196 1, ch VI, § 3) treats this topic in the one-dimensional case by expanding 
the potential in powers of x - (x), and this is the procedure that will be adopted here. 

0305-4470/81/051123 +07$01.50 @ 1981 The Institute of Physics 1123 



1124 M Andrews 

Unfortunately, although presented as being valid for an arbitrary but slowly varying 
potential, his results are not generally valid (see Appendix). They are valid for 
quadratic potentials, for which there is a considerable recent literature (e.g. Askar and 
Weiner 1971, Hasse 1978, Remaud and Hernandez 1980). 

We will require rates of change of quantities of the form ( (a  - (a ) )@ - (b ) ) ) ,  where a 
and b are Hermitian operators. This expectation value can also be written as (ab ) -  
(a )@) ,  and hence 

d 
dt -((a - (a>)@ - (b ) ) )  

=ih-’([H, a ] b  +u[H, b ] - [ ~ ,  a ] ( b ) - ( a ) [ ~ ,  b ] )  

= ih-’((a - (u))[H, b ]  -[H, a ] ( b  - (b) ) ) .  (1.2) 

Since ( a  - ( a ) )  = 0, [H, b ]  may be replaced by [H, b ]  -([H, b ] )  and similarly for [H, a ] .  
These calculations would be a little simpler in the Heisenberg picture but there is, of 
course, no  essential difference. 

2. Wavepacket for a single particle in one dimension 

Let x and p represent the position and momentum observables and write X = x - ( x ) ,  
P = p  - - ( p ) .  The Hamiltonian is H = (2m)-’p2+ V ( x ) .  Using [H, x ]  = -ihp/m and 
[H, p ]  = ihV’, equation (1.2) gives 

d 
--(x2) = m-’(Xp + p x )  = m-’(XP+PX), 
dt 

d 
dt 
-(P2) = - (PV‘+ V’P).  

A closed system of equations is obtained if one expands the force through 

v’ (x)=v’+“”~v’’ ’x2+.  . . (2.2) 

where v’ = V’((x)) ,  v” = V”((x) )  and v’” = V’”((x)).  Then V ’ -  ( V ‘ )  = v”X where we 
ignore, at this stage, terms involving third or higher derivatives of V ,  since on insertion 
in (2.1) they will give third-order correlations, e.g. (X3) or (PX2). Thus 

d d 
- (P2)  dt = -v”(PX +XP)  = -mv”-((X2), dt 

(2.3) 

Write x = (X2), w = m-2(P2) and 4(t) = m-’v”. To a sufficient approximation, v“ is 
known as a function of t from the classical trajectory when ( x )  and ( p )  are given at t = 0. 
Equation (2.3) becomes 

(j = -4x kj j  = w  -4x. (2.4) 
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This pair of coupled differential equations forx, w yields a third-order linear differential 
equation in x alone: 

$2 + 24x +& = 0. (2.5) 

With the substitution (Kamke 1959) x = MU, this equation can be written as 

(v d/dt + 3d)(ii + +U) +(U d/dt + 3zi)(i; + 421) = 0. 

Hence if U and 21 are any two solutions of U ++U = 0, then x = u21 will satisfy (2.5). If U 
and U are linearly independent, then U’, uv, v 2  form a complete basis for solutions of 
(2.5). 

Let U and U be chosen such that U (0) = 1, zi(0) = 0 and 21 (0) = 0, ii(0) = 1 and 
write x = A u ~ + B u u + C U ~  where A,  B, C are constants. Then 
~ = 2 A u M + B ( u ~ + ~ v ) + 2 C v d  and, using w = $ X + + x ,  w=Au2+Buv+Cv2.  Then 
the boundary conditions on U , U  at t = O  give A =xo:= (X2)t=o, B = 
io := mp‘(XP+PX) ,=o,  C = w o  := m-2(P2)t=o. The system of equations 

x =x*u2+xl$4v +wov2,  

x = 2xouzi +Xo(ud + Liv) + 2wovd, 
w =X”Li2+xOzid+woi i  2 , 

constitute a solution to the problem of the time evolution of the spread in position and 
momentum of a wavepacket as it follows approximately a classical trajectory. 

3. Obtaining the quantum spreading from the classical trajectory 

Consider two classical particles of mass m at neighbouring points x andx2, each subject 
to the potential V ( x )  but with no interaction between the two. Thus m f l  = - V ’ ( x l ) ,  
m i 2  = - V ‘ ( x 2 ) .  Expanding the potential as V ’ ( x 2 ) =  V ‘ ( x 1 ) + ( x 2 - x I ) V ’ ’ ( x 1 )  and wri- 
ting y := x 2  - x l  yields y = -4 (t)y.  It is now clear that the functions U and v required to 
calculate the evolution of a quantum packet can be obtained from the classical 
trajectory. 

Let x (a,  b, t )  be a classical trajectory such that m i  = - V ’ ( x )  and x (a, b, 0 )  = a ,  
1 (a,  b, 0 )  = b. Define u ( t )  := dx/da, v ( t )  := dx/db. Then ii ++U = 0, i; ++U = 0 and 
u(0)  = 1, zi (0) = 0, v (0 )  = 0, d(0) = 1. These are precisely the functions needed for 
insertion into (2.6) to calculate the evolution of a packet. 

4. A correction to the classical trajectory 

Having found x, a correction can be made to the trajectory of ( x )  using 

d2 
dt 

m-+x)= - v ’((x  )) - +x v “’((x )) . (4.1) 

This is the equation for classical motion under a given time-dependent potential, but 
here it is meaningful to include only terms linear in x in the solution. Write ( x )  = 5 +v, 
where m l  = - V’(5) and 5 satisfies the given initial conditions for ( x ) .  Then (4.1) 
becomes ij ++v = - [ ( t ) ,  where [ ( t )  = (2m)-1~V”’(5)  and terms quadratic in x or TJ 
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have been dropped. The solution of this with 77 (0) = 4 (0) = 0 is 

= lof [U (t)v (t’)  - v ( t )u  (t’)]t(t’? dt’. (4.2) 

5. Inequalities and invariants 

The quantities x,  k, w do not change independently. Equations (2.4) yield 
(d/dt)(4xw -i2) = 0. Thus h := x w  -ix2 is constant. Application of the Schwarz 
inequality (Merzbacher 1970, ch 8, Q 6, first equation on p 160) shows that 

4(X2)(P2) 3 (XP +PXj2 + ((XP -Px>(2 = h2 + (XP +PX)? 

4xw - x 2  3 (h/m)‘. (5.1) 

Hence 

This shows that, although x = (cyu 
boundary conditions, since this would require 4x000 = 2;. 

position, the definition of h gives 

is a solution of (2.5), it could not fit the 

Writing p = x ” ~ :  so that p is the root-mean-square deviation from the mean 

p 3@ + + p )  = h 2. (5.2) 

The close connection between this equation and the equation 4 ++(t)q = 0 for the 
motion of a ‘time-dependent harmonic oscillator’ has been studied for some time and 
particularly recently in connection with dynamical invariants (Reid and Ray 1980, 
Korsch 1979, and references contained in these). Equations (2.6) can be inverted, using 
ud - uv  = 1, to give 

xo=xv2-xvv +wv2 ,  Xi.0 = - 2xuv +$(ud -t Uv) - 2wuv, 
. 2  wc =xu -xuu + o u 2 .  

(5.3) 

The right-hand sides of these equations are dynamical invariants for any solutions U and 

The evolution in time of the spread of a one-dimensional quantum wavepacket (to 
the approximation considered here) thus provides a realisation of a time-dependent 
oscillator; but whereas in the literature 4 + +q = 0 has been thought of as the equation 
of motion and (5.2) as an auxiliary equation useful in its analysis, here the roles of the 
two equations are reversed. We will see that the spread of a cluster of classical particles 
satisfies the same equations. 

v of g++q = O .  

6. Wavepacket for a single particle in more than one dimension 

Denote the position coordinates by xi and the momenta by pi, and put X i  = x i  -(xi), 
Pi = p l  - ( p t ) .  Instead of the single quantity ( X 2 >  to represent the spread of the packet, 
we now consider the tensor (XiX,). Assuming H = ( 2 m ) - ]  C i p ? + V ( x ) ,  where x 
signifies the set x,, x 2 ,  . . . , it follows that [H, xi] = (h/im)pj and [H, pi] = ihV, where 
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V, := dV/dxj. Equation (1 .2)  then gives 

d -(x,x,) = m-'(XiPj +pix,) ,  

d - (pix, ) = m -'(P,P,. ) - ( vixj ), 

d 
-(x,P,)= m- ' (PiPj ) - (x iy ) ,  

-(P,P,.)= - ( P i y + v i P j ) .  

dt dt 

dt dt 

(6.1) 
d 

Approximation of Vi (x) by vi +Xjvij (repeated indices to be summed) then leads to 
the closed system 

d d -(x,x,) = m-'(XiPj +P,x,), 
dt dt 

d 
dt dt 

- (XiPj ) = m - '(PiPj ) - (xi& ) v k j ,  

(6.2) 
d 
-(Pi< ) = - ((Pix, ) v k j  + (XkPj )Vik ) e  -(Pix, ) = m -'(PiPj) - ( x k 4  )Vik 9 

The required solutions of this system can be constructed from the solutions of the 
simpler set 

(6.3) 

where + i j  := m-'vij. If ui and vi are any two sets of solutions of (6.3) then (Xi&) = uivj, 
(XiP,) = UiZji + C&j, (Pix,) = LiiVj - Ctj ,  (PiP,) = Liilji satisfy (6.2). In order to satisfy the 
boundary conditions at t = 0, let u i  , vr be a basis set of solutions of (6.3) such that 
U: (0) = S : ,  Li: (0) = 0 and U: (0) = 0, Sf  (0) = 8:. Then 

Gi ++..U. 11 I = 0 

(XiX,)=AklUfUf +Bkl(U:Uf +ufuf)+Cklvivj, k l  

m-'(XiPj) = A k l U k L i f  +Bkl(UkSf + Lifuf) -k$hm-'6ij +cklv:.Ljf, 
??-'(Pi&) = A k l t i : U j  +Bkl(Li:uf + U r ~ f )  -$ihm-l&j + cklvi . k  uj, 1 

m --2(PiPj) = A k l L i  :li:. + Bkl(Li :zij f ti ; z j  t )  + c k l i ,  f ~ j ,  (6.4) 

satisfy (6.2)' and putting t = 0 gives 

Aij = ( X i 4  >o, 

m 'cij = (pie  )o, 

2mB, = (XiP, +Pixj )o + eijk (Lk )o, 
(6.5) 

where L = X Xp and we have used (Xi< - Pix j )  = ihSij + eijk ( L k  ). Thus A and C are 
symmetric matrices, but B is symmetric if and only if the packet has no angular 
momentum about its centroid at t = 0. 

The functions U:, v: can be obtained from the classical trajectory. Let X(Q, 6, t )  
satisfy Newton's equation of motion mxi = -dV/dxi and the initial conditions 
x(a, b, 0) = a and i (a ,  b, 0) = b. Define U: = dxi/dak and differentiate Newton's equa- 
tion with respect to ak. Hence miif = --U; a2V/dxi  ax, with initial conditions at t = 0, 
U: (0) = 8: and ti: (0) = 0. Similarly defining v: = dxi/dbk leads to mi;: = 
-U; d2V/dxi axj with U: (0) = 0, 2 j :  (0) = 6:. 

7. Spreading of clusters of classical particles 

Consider a cluster of n-identical classical particles each of mass m and subject to the 
same potential V ( x )  so that the p t h  particle, at position x t ,  moves according to 



1128 M Andrews 

mxf = - Vi (x") where Vi (x) = 8 V ( x ) / d x i .  Define mean values by summing over the 
particles in the cluster; thus ( x i )  := K 1  E& x f .  Then d(xi)/dt = n-' C, xr =: ( x i )  and 
d2(xi)/dt2=n- '  E p i r  =: (xi)= -(mn)- 'C, Vi&") =: m-'(Vi ) .  Write Xi : = x i  - ( x i )  
and expand vi (x) in powers about (x): thus vi (x) = vi + vijjx, -ti v , j k j x , x k  + . . . , where 
vi = Vi ((x)), vij = Vii ((x)), etc. 

If we ignore correlations of third or higher orders we obtain the following equations 
for the second-order correlations: 

d 
dt 
- (xiq)  = (Xi&. +Xijx,), 

d 
dt 
-(xi%,) = (Xi&) - m -yxi v, ) = (Xi&) - m -'(xiXk)vkj, (7.1) 

These are identical in form to (6.2), and the solutions we obtained to those equations 
will serve here, the only difference being that the term in h in (6.4) is not needed to fit the 
boundary conditions here. In one dimension, only the symmetrised mixed correlation 
(XP + P X )  is required to give a closed system of equations for the quantum case, and 
then there is no difference between the classical and quantum cases; no terms involving 
A appear. In more than one dimension (XiPj)  and ( P i x j )  are required separately, and a 
term in his unavoidable. This difference may be due to the absence of angular motion in 
one dimension. 

8. Differential inequalities 

From (5.1) follows the weaker inequality x 2  s 4xw. In terms of Ax := x 1'2, that is, the 
root-mean-square deviation from the mean position, this gives ld(Ax)/dt/ S m-'Ap.  It 
will now be shown that this is a special case of a more general inequality for the rate of 
change of the spread of any observable a.  

Define ( A u ) ~  = ( (a  - ( u ) ) ~ )  = ( u ~ ) - ( u ) ~ .  Equation (1.2) then gives 

d 
-(ALz)~ = ih-'((a - (a))[H,  a ]  -[H, a](a - (a ) ) ) .  
dt 

The Schwarz inequality shows that l([(a - (a ) ) ,  i[H, a]])1 s 2Aa A(i[H, a ] )  and hence 

This exact inequality is striking in its simplicity and in its close parallel to the Ehrenfest 
relation 

d(a)/dt = ih-'([H, a ] ) .  

I cannot see, however, how (8.1) can be usefully applied to the present problem. In 
the case of a single particle under the potential V ,  we have 
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As well as the difficulty of dealing with coupled sets of inequalities, there is the weakness 
that the inequality (8.1) applies only to the magnitude of the rate of change and 
therefore cannot distinguish between a positive rate, which will allow a continuing 
increase in the spread, and a negative rate, for which the spread may oscillate. 

9. Generalisations 

Several generalisations of the work above suggest themselves but will not be fully 
worked out here. Third- and higher-order correlations may be considered. A closed set 
of equations can be obtained for the nth-order correlations if higher orders are 
neglected. If third-order correlations are to be taken into account, the equations for the 
second-order correlations are more complex than those considered above, and the 
solutions for the third-order correlations are required as input to these second-order 
equations. These high correlations can be used to improve the trajectory (i.e. the 
evolution of the first-order quantities). 

Another generalisation is to consider the evolution of packets representing several 
interacting particles. Consider the case of two particles in one dimension with Hamil- 
tonian (2mJ'p: + (2mJ'pz' + V(xl, xz). We have d(x,)/dt = m;' ( p , )  (no sum- 
mation) and d(p,)/dt = -(VI). Write X, := x, -(x,) and expand V ( x l ,  x2) = 
v +  v,X, + t v , X , ~  + . . . where v = V((xl), (xz)), etc. To a first approximation, (x,) are 
determined as functions of t by the solution of the classical two-body problem with 
potential V. The development is formally similar to that of 0 6 except that now the mass 
depends on the index i. This makes little difference, although the quantity 
+,, := (m, )~ 'v , ,  is now not symmetric in its indices. 

Finally, one could consider non-conservative systems such as a particle in an 
electromagnetic field. 

Appendix. On Messiah's discussion of the spreading of wavepackets 

Messiah's equation VI.12 is correct, but he assumes that E is constant. In fact 
ds/dt ==(2m)-'(p)~V:{. After a time t, E will change by an amount of the order of 
(2m)-'(p)~V:t. WritingX = (p)t/m for the mean distance travelled in that time, then 
unless V Z X  << V:], the change in E will be of the same order as the other term in VI. 12, 
namely V$y. Unless V is essentially quadratic, the variation in E must be taken into 
account, and this leads to the third-order equation (2.5) above. 
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